logging模块介绍
Python的logging模块提供了通用的日志系统,熟练使用logging模块可以方便开发者开发第三方模块或者是自己的Python应用。同样这个模块提供不同的日志级别,并可以采用不同的方式记录日志,比如文件,HTTP、GET/POST,SMTP,Socket等,甚至可以自己实现具体的日志记录方式。下文我将主要介绍如何使用文件方式记录log。
logging模块包括logger,handler,filter,formatter这四个基本概念。
logging模块与log4j的机制是一样的,只是具体的实现细节不同。模块提供logger,handler,filter,formatter。
logger:提供日志接口,供应用代码使用。logger最长用的操作有两类:配置和发送日志消息。可以通过logging.getLogger(name)获取logger对象,如果不指定name则返回root对象,多次使用相同的name调用getLogger方法返回同一个logger对象。
handler:将日志记录(log record)发送到合适的目的地(destination),比如文件,socket等。一个logger对象可以通过addHandler方法添加0到多个handler,每个handler又可以定义不同日志级别,以实现日志分级过滤显示。
filter:提供一种优雅的方式决定一个日志记录是否发送到handler。
formatter:指定日志记录输出的具体格式。formatter的构造方法需要两个参数:消息的格式字符串和日期字符串,这两个参数都是可选的。
与log4j类似,logger,handler和日志消息的调用可以有具体的日志级别(Level),只有在日志消息的级别大于logger和handler的级别。
logging.StreamHandler: 日志输出到流,可以是sys.stderr、sys.stdout或者文件
logging.FileHandler: 日志输出到文件
日志回滚方式,实际使用时用RotatingFileHandler和TimedRotatingFileHandler
logging.handlers.BaseRotatingHandler
logging.handlers.RotatingFileHandler
logging.handlers.TimedRotatingFileHandler
logging.handlers.SocketHandler: 远程输出日志到TCP/IP sockets
logging.handlers.DatagramHandler: 远程输出日志到UDP sockets
logging.handlers.SMTPHandler: 远程输出日志到邮件地址
logging.handlers.SysLogHandler: 日志输出到syslog
logging.handlers.NTEventLogHandler: 远程输出日志到Windows NT/2000/XP的事件日志
logging.handlers.MemoryHandler: 日志输出到内存中的制定buffer
logging.handlers.HTTPHandler: 通过"GET"或"POST"远程输出到HTTP服务器
python:logging模块
10 DECEMBER 2015
概述
python的logging模块(logging是线程安全的)给应用程序提供了标准的日志信息输出接口。logging不仅支持把日志输出到文件,还支持把日志输出到TCP/UDP服务器,EMAIL服务器,HTTP服务器,UNIX的syslog系统等。在logging中主要有四个概念:logger、handler、filter和formatter,下面会分别介绍。
logger
Logger对象扮演了三重角色:
它给应用程序暴漏了几个方法,以便应用程序能在运行时记录日志。
Logger对象根据日志的级别或根据Filter对象,来决定记录哪些日志。
Logger对象负责把日志信息传递给相关的handler。
在Logger对象中,最常使用的方法分为两类:configuration,message sending。 configuration方法包括:
setLevel(level)
setLevel(level)方法用来设置logger的日志级别,如果日志的级别低于setLevel(level)方法设置的值,那么logger不会处理它。logging模块内建的日志级别有:
message sending方法包括:
debug(log_message, [*args[, **kwargs]])
使用DEBUG级别,记录log_message % args。
为了记录异常信息,需要将关键字参数exc_info设置为一个true值。
比如:
使用INFO级别,记录log_message % args。
为了记录异常信息,需要将关键字参数exc_info设置为一个true值。
比如:
使用WARNING级别,记录log_message % args。
为了记录异常信息,需要将关键字参数exc_info设置为一个true值。
比如:
使用Error级别,记录log_message % args。
为了记录异常信息,需要将关键字参数exc_info设置为一个true值。
比如:
使用CRITICAL级别,记录log_message % args。
为了记录异常信息,需要将关键字参数exc_info设置为一个true值。
比如:
使用整型的级别level,记录log_message % args。
为了记录异常信息,需要将关键字参数exc_info设置为一个true值。
比如:
方法返回一个Logger实例的引用,如果提供了name参数,那么它就是这个Logger实例的名称,如果没提供name参数,那么这个Logger实例的名称是root。
可以通过Logger实例的name属性,来查看Logger实例的名称。
Logger实例的名称是使用句号(.)分隔的多级结构。
在这种命名方式中,后面的logger是前面的logger的子(父子logger只是简单的通过命名来识别),比如:有一个名称为foo的logger,那么诸如foo.bar、foo.bar.baz和foo.bam这样的logger都是foo这个logger的子logger。
子logger会自动继承父logger的定义和配置。
使用相同的名称多次调用logging.getLogger([name])方法,会返回同一个logger对象的引用。
这个规则不仅仅在同一个module有效,而且对在同一个Python解释器进程的多个module也有效。
因此应用程序可以在一个module中定义一个父logger,然后在其他module中继承这个logger,而不必把所有的logger都配置一遍。
handler
handler实例负责把日志事件分发到具体的目的地。logger对象可以使用addHandler()方法,添加零个或多个handler对象到它自身。一个常见的场景是:应用程序可能希望把所有的日志都记录到一个log文件,所有的ERROR及以上级别的日志都记录到stdout,所有的CRITICAL级别的日志都发送到一个email地址。这个场景需要三个独立的handler,每个handler负责把特定级别的日志发送到特定的地方。
下面是logging模块内置的handler:
内置的handler提供了下面的配置方法:
setLevel(level)
handler对象的setLevel()方法,与logger对象的setLevel()方法一样,也是用于设置一个日志级别,如果日志的级别低于
setLevel()方法设置的值,那么handler不会处理它。
setFormatter(formatter)
addFilter(filter)
removeFilter(filter)
应用程序代码不应该直接实例化和使用handler。logging.Handler是一个定义了所有的handler都应该实现的接口和建立了子类能够使用(或重写)的一些默认行为的基类。
自定义Handler 自定义的handler必须继承自logging.Handler,且实现下面的方法:
其中,emit(record)方法负责执行真正地记录日志所需的一切事情,在logging.Handler的子类中必须实现这个方法。close()方法负责清理handler所使用的资源(在Python解释器退出的时候,会调用所有的handler的flush()和close()方法),logging.Handler的子类应该确保在重写close()方法的时候,调用父类的该方法。
下面分析logging.StreamHandler的源代码:
在构造函数中,如果提供了strm参数,那么它就是要输出到的流,如果没提供,那么就会将日志输出到标准错误输出流sys.stderr。
flush()方法的作用是:刷新self.stream内部的I/O缓冲区。每次emit日志之后都会调用这个方法,将日志从I/O缓冲区sync到self.stream。
emit(record)方法的作用是:将LogRecord对象(record)记录到self.stream。emit(record)方法首先调用基类logging.Handler提供的format(record)方法,该方法会根据设置的Formatter对象来格式化record对象,得到要记录的字符串msg。然后对fs(fs其实就是在msg的尾部增加一个换行'\n')进行一系列的编码解码,将它写入到self.stream。最后再刷新self.stream。在emit(record)调用期间发生的异常,应该调用logging.Handler提供的handleError(record)方法来处理。
filter
Filter对象用于对LogRecord对象执行过滤,logger和handler都可以使用filter来过滤record。下面用一个列子来说明Filter基类的作用:
如果使用A.B实例化一个filter,那么它允许名称为A.B,A.B.C,A.B.C.D这样的logger记录的日志通过,不允许名称为A.BB,B.A.B这样的logger记录的日志通过。
如果使用空字符串实例化一个filter,那么它允许所有的事件通过。
Filter基类有一个方法叫filter(record),它用来决定指定的record(LogRecord对象)是否被记录。如果该方法返回0,则不记录record;返回非0则记录record。
Filterer(注意:不是Filter)是logger和handler的基类。它提供了方法来添加和删除filter,并且提供了filter(record)方法用于过滤record,该方法默认允许record被记录,但是任何filter都可以否决这个默认行为,如果想要丢弃record,filter(record)方法应该返回0,否则应该返回非0。
formatter
Formatter对象用于把一个LogRecord对象转换成文本,它定义了日志的格式、结构。与logging.Handler类不同,应用程序可以直接实例化Formatter类,如果需要也可以子类化Formatter,以便定制一些行为。
Formatter的构造函数接受两个参数:第一个参数是用于日志信息的格式化字符串;第二个参数是用于日期的格式化字符串。第二个参数可选的,默认值是%Y-%m-%d %H:%M:%S。
日志信息的格式化字符串用%(<dictionary key>)s风格的字符串做替换。
下面是替换字符串和它们所代表的含义:
配置logging
下面是一个简单的例子,它会向标准输出打印日志:
运行这个脚本,输出结果是:
使用配置文件,配置logging
下面是一个使用配置文件,配置logging的例子:
logging.conf如下:
需要解释的地方有两处:第一个是logger_xxxsection中的propagate选项,在logger对象把record传递给所有相关的handler的时候,会(逐级向上)寻找这个logger和它所有的父logger的全部handler。在寻找过程中,如果logger对象的propagate属性被设置为1,那么就继续向上寻找;如果某个logger的propagate属性被设置为0,那么就会停止搜寻。
第二个是logger_xxxsection中的qualname选项,它其实就是logger的名称。
使用配置文件的时候,必须定义root logger。
最酷的listen(port)函数
logging.config.listen(port)函数可以让应用程序在一个socket上监听新的配置信息,达到在运行时改变配置,而不用重启应用程序的目的。
监听程序:
发送新的配置信息程序:
以上这篇对python中的logger模块全面讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。